Semiparametric Differential Graph Models

نویسندگان

  • Pan Xu
  • Quanquan Gu
چکیده

In many cases of network analysis, it is more attractive to study how a network varies under different conditions than an individual static network. We propose a novel graphical model, namely Latent Differential Graph Model, where the networks under two different conditions are represented by two semiparametric elliptical distributions respectively, and the variation of these two networks (i.e., differential graph) is characterized by the difference between their latent precision matrices. We propose an estimator for the differential graph based on quasi likelihood maximization with nonconvex regularization. We show that our estimator attains a faster statistical rate in parameter estimation than the state-of-the-art methods, and enjoys the oracle property under mild conditions. Thorough experiments on both synthetic and real world data support our theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models

In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...

متن کامل

High - dimensional semiparametric bigraphical models

In multivariate analysis, a Gaussian bigraphical model is commonly used for modelling matrixvalued data. In this paper, we propose a semiparametric extension of the Gaussian bigraphical model, called the nonparanormal bigraphical model. A projected nonparametric rank-based regularization approach is employed to estimate sparse precision matrices and produce graphs under a penalized likelihood f...

متن کامل

High Dimensional Semiparametric Gaussian Copula Graphical Models

In this paper, we propose a semiparametric approach, named nonparanormal skeptic, for efficiently and robustly estimating high dimensional undirected graphical models. To achieve modeling flexibility, we consider Gaussian Copula graphical models (or the nonparanormal) as proposed by Liu et al. (2009). To achieve estimation robustness, we exploit nonparametric rank-based correlation coefficient ...

متن کامل

The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs

Recent methods for estimating sparse undirected graphs for real-valued data in high dimensional problems rely heavily on the assumption of normality. We show how to use a semiparametric Gaussian copula—or “nonparanormal”—for high dimensional inference. Just as additive models extend linear models by replacing linear functions with a set of one-dimensional smooth functions, the nonparanormal ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016